MATH3280A Introductory Probability, 2014-2015 Solutions to HW1

P. 34 Ex. 8

Let $A_{1}, A_{2}, \ldots, A_{n}$ be n events. Show that if $P\left(A_{1}\right)=P\left(A_{2}\right)=\ldots=P\left(A_{n}\right)=1$, then $P\left(A_{1} A_{2} \ldots A_{n}\right)=1$.

Solution

For any $i \in\{1,2, \ldots, n\}, P\left(A_{i}^{c}\right)=1-P\left(A_{i}\right)=0$.
Then we have

$$
\begin{aligned}
P\left(\left(A_{1} A_{2} \ldots A_{n}\right)^{c}\right) & =P\left(A_{1}^{c} \cup A_{2}^{c} \cup \ldots \cup A_{n}^{c}\right) \\
& \leq \sum_{i=1}^{n} P\left(A_{i}^{c}\right) \quad(\text { by countable subadditivity of } \mathrm{P}) \\
& =0
\end{aligned}
$$

Hence $P\left(\left(A_{1} A_{2} \ldots A_{n}\right)^{c}\right)=0$ and $P\left(A_{1} A_{2} \ldots A_{n}\right)=1-P\left(\left(A_{1} A_{2} \ldots A_{n}\right)^{c}\right)=1$.

P. 35 Ex. 12

(Borel-Cantelli lemma)
Let $A_{1}, A_{2}, A_{3}, \ldots$ be a sequence of events.
Prove that if the series $\sum_{n=1}^{\infty} P\left(A_{n}\right)$ converges, then $P\left(\bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} A_{n}\right)=0$.

Solution

Let $B_{m}=\bigcup_{n=m}^{\infty} A_{n}$ for $m=1,2, \ldots$
Then $\left\{B_{m}\right\}_{m=1}^{n=m}$ is a decreasing sequence of events.

$$
\begin{aligned}
P\left(\bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} A_{n}\right) & =P\left(\bigcap_{m=1}^{\infty} B_{m}\right) \\
& =\lim _{m} P\left(B_{m}\right) \\
& =\lim _{m} P\left(\bigcup_{n=m}^{\infty} A_{n}\right) \\
& \leq \lim _{m} \sum_{n=m}^{\infty} P\left(A_{n}\right) . \quad \text { (countable subadditivity) }
\end{aligned}
$$

The tail of a convergent series tends to zero:
Let $L=\sum_{n=1}^{\infty} P\left(A_{n}\right)<\infty$. We have

$$
\begin{aligned}
\lim _{m} \sum_{n=m}^{\infty} P\left(A_{n}\right) & =\lim _{m}\left(\lim _{k} \sum_{n=m}^{k} P\left(A_{n}\right)\right) \\
& =\lim _{m}\left(\lim _{k} \sum_{n=1}^{k} P\left(A_{n}\right)-\sum_{n=1}^{m-1} P\left(A_{n}\right)\right) \\
& =\lim _{k} \sum_{n=1}^{k} P\left(A_{n}\right)-\lim _{m} \sum_{n=1}^{m-1} P\left(A_{n}\right) \\
& =L-L \\
& =0 .
\end{aligned}
$$

Hence

$$
P\left(\bigcap_{m=1}^{\infty} \bigcup_{n=m}^{\infty} A_{n}\right)=0
$$

